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FACETS FOR POLYHEDRA ARISING IN THE DESIGN
OF COMMUNICATION NETWORKS

WITH LOW-CONNECTIVITY CONSTRAINTS*

MARTIN GR(TSCHEL, CLYDE L. MONMAt, AND MECHTHILD STOER

Abstract. This paper addresses the important practical problem of designing survivable fiber
optic communication networks. This problem can be formulated as a minimum-cost network design
problem with certain low-connectivity constraints. Previous work presented structural properties of
optimal solutions and heuristic methods for obtaining "near-optimal" network designs. Some facet-
inducing inequalities for the convex hull of the solutions to this problem are given. A companion
paper describes computational results on real-world telephone network design problems with a cutting
plane method based on this work. These computational results are summarized in the last section of
this paper.
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1. Introduction. A recent trend in communication networks is the emergence
of fiber optic technology as one of the major components in the "network of the fu-
ture." This transmission medium is cost-effective and reliable, and provides very high
transmission capacity. This combination promises to usher in new telecommunication
services requiring large amounts of bandwidth. At the same time, the unique charac-
teristics of this technology imply the need for new network design approaches. (See
[CFLM] for more details.)

Survivability is an important factor in the design of communication networks.
Network survivability is used here to mean the ability to restore service in the event
of a catastrophic failure of a network component, such as the complete loss of a
transmission link, or the failure of a switching node. Service could be restored by
routing traffic through other existing network links and nodes, assuming that the
design of the network has provided for this additional connectivity. Clearly, a higher
level of redundant connectivity results in a greater network survivability and a greater
overall network cost. This leads to the problem of designing a minimum-cost network
that meets certain required connectivity constraints.

Survivability is a particularly important issue for fiber networks. The high capac-
ity of fiber facilities results in much more sparse network designs with larger amounts
of traffic carried by each link than is the case with traditional bandwidth-limited
technologies. This increases the potential damage to network services due to link or
node failures. It is necessary to trade off the potential for lost revenues and customer
goodwill against the extra costs required to increase the network survivability. Recent
works on methods for designing survivable fiber communication networks by [CMW]
and [MS] conclude that (1) survivability is an important issue for fiber networks,
(2) "two-connected" topologies provide a high level of survivability in a cost-effective
manner, and (3) good heuristic methods exist for quickly generating "near-optimal"
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networks. In particular, it was determined that a network topology should provide
for at least two diverse paths between certain "special" offices, thus providing for pro-
tection against any single link or single node failure for traffic between these offices.
These special offices represent high revenue-producing offices and other offices that
require a higher level of network survivability.

We now formalize the network design problems that are being considered in this
paper. A set of nodes V is given that represents the locations of the switches (offices)
that must be interconnected into a network in order to provide the desired services.
A collection E of edges is also specified that represents the possible pairs of nodes
between which a direct transmission link can be placed. We let G (V, E) be the
(undirected) graph of possible direct link connections. The graph G may have parallel
edges but contains no loops. (Thus we assume throughout this paper that all graphs
considered are loopless. But they may have parallel edges. Graphs without parallel
edges are called simple.)

Given a graph G (V,E) and W c_ V, the edge set 8(W) {ij E Eli W,
j V\W} is called the cut (induced by W). (We will write 8a(W) to make clear--in
case of possible ambiguities--with respect to which graph the cut induced by W is

considered.)
For W, W V with W NW= q} we define [W’W] := {ij Eli W,j W}.

So 8(W) [W" V\W]. For W c_ V, we denote by G[W] the subgraph of G induced
by W and by E(W) its edge set {ij Eli, j W}. G/W is the graph obtained
from G by contracting the nodes in W to a new node w (retaining parallel edges). We
call the reverse operation of replacing the shrunk node w by the original node set W
the expansion of w in G/W to G. We will denote by G- v the graph obtained by
removing the vertex v and all incident edges from G, and by G-F the graph obtained
by removing the edge set F from G (we write G f instead of G {1}). If G v has
more connected components than G for some node v, we will call v an articulation
node of G. Similarly, if G- e has more connected components than G, we will call
edge e a bridge of G.

Each edge e E has a fixed cost ce of establishing the direct link connection.
The cost of establishing a network N (V, F) consisting of a subset F C_ E of edges is

c(F) := eeF c, i.e., it is the sum of the costs of the individual links contained in F.
The goal is to build a minimum-cost network so that the required survivability con-
ditions, which we describe below, are satisfied. We note that the cost here represents
setting up the topology for the communication network and includes placing conduits
in which to lay the fiber cables, placing the cables into service, and other related costs.
We do not consider costs that depend on how the network is implemented, such as
routing, multiplexing, and repeater costs. Although these costs are also important,
it is usually the case that a topology is first designed and then these other costs are
considered in a second stage of optimization.

For any pair of distinct nodes s, t V, an Is, t]-path P is a sequence of nodes and
edges (vo, el, vl, e2,. , vl-1, el, vl), where each edge ei is incident with the nodes vi-1

and vi (i 1,..., 1), where vo s and vl t, and where no node or edge appears more
than once in P. A collection P, P2," ",Pk of Is, t]-paths is called edge-disjoint if no
edge appears in more than one path, and is called node-disjoint if no node (except
for s and t) appears in more than one path. (Remark: In order to be consistent
with standard graph theory we do not consider two parallel edges as two node-disjoint
paths.)

The survivability conditions require that the network satisfy certain edge-
and node-connectivity requirements. In particular, each node s E V has an associated
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nonnegative integer rs, which represents its connectivity requirement. This means
that for each pair of distinct nodes s, t E V, the network N (V, F) to be designed
has to have at least

r(s, t) "= min{rs, r,}

edge-disjoint (or node-disjoint) Is, t]-paths. These conditions ensure that some com-
munication path between s and t will survive a prespecified level of edge (or node)
failures. The levels of survivability specified depend on the relative importance placed
on maintaining connectivity between different pairs of offices.

The fiber optic network design problems that arise in practice and that we are
addressing in this paper have three types of offices. The so-called "special" offices have
connectivity requirement 2 while "ordinary" offices have connectivity requirement 1.
An office with connectivity requirement 0 is called "optional" since it need not be part
of the network to be designed.

Figure 1.1 shows an example network. Special offices are indicated by squares,
ordinary offices by circles. Optional offices do not occur. The lines (thin, bold, and
dashed) represent the possible direct links from which the minimum-cost survivable
network must be designed. The network obtained by removing the dashed lines, i.e.,
the graph formed by the union of bold and thin lines, represents a feasible network. It
consists of a two-connected part (the bold lines) containing all special nodes, in which
every pair of nodes is linked by at least two node-disjoint paths and a collection of
trees (the thin lines), which link the remaining nodes into the two-connected part.

Thus in the remainder of this paper we consider the case where the connectivity
requirements satisfy

rE(0,1,2} for allsV.

Nodes of connectivity requirement 0 (respectively, 1, 2) will also be called nodes of
type 0 (respectively, type 1 2). Let us define the 2ECON problem (respectively,
2NCON problem) to be the network design problem where between each pair of
distinct nodes s and t at least min(r,rt) edge-disjoint (respectively, node-disjoint)
paths are required.

Given G (V, E), we extend the connectivity requirement function r to functions
operating on sets by setting

r(W) max{re Is e W} for all W c_ V, and

con(W) := max{r(s, t) s e W,t e V\W}
min{r(W), r(V\W)} for all W C_ V, O#w#y.

Let us now introduce, for each edge e E E, a variable xe and consider the vector
space IRE. Every subset F C_ E induces an incidence vector xF (Fe)eEE IE

by setting XF := 1 if e F, and XeF :- 0 otherwise. Vice versa, each 0/1-vector
x IRE induces a subset Fx :- {e E lxe 1} of the edge set E of G. For
any subset of edges F c_ E, we define x(F) -eEF Xe. We can now formulate
the 2NCON network design problem introduced above as the following integer linear
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FIG. 1.1
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program:

(1.1)

min cijxij
ijeE

subject to
(i) x(5(W)) >_ con(W)
(ii) x(5a-z(W)) >_ 1

(iii) 0 _< xij _< 1
(iv) xij integral

for all W c_ V, W V;
for all z E V, and for all W c_ V\{z}, W
Y\{z} with r(W) 2 and r(Y\(W U {z})) 2;
for all ij E;
for all ij E.

It follows from Menger’s theorem that, for every feasible solution x of (1.1), the sub-
graph N (V, Fx) of G defines a network satisfying the two-connected survivability
requirements for the 2NCON problem. Removing (ii), we have an integer linear pro-
gram for the 2ECON network design problem. (Note that in the case r {0, 1}V,
inequalities (i), (iii), and (iv) of (1.1) characterize the Steiner tree problem.) An in-
equality of type (i) is called a cut inequality, one of type (ii) is called a node-cut
inequality, and one of type (iii) is called a trivial inequality.

The main objective of this paper is to study the 2ECON and 2NCON network
design problems from a polyhedral point of view to see which inequalities are suitable
choices for a cutting plane approach, i.e., we want to find a tighter LP-relaxation than
the one obtained by dropping the integrality constraints (iv) of (1.1) for the 2ECON
and 2NCON network design problems. To do this we define the following polytopes.
Let G- (V, E) be a graph and let r e {0, 1, 2}y be given with rv 2 for at least two
nodes. Then

2NCON(G; r)
2ECON(G; r)

conv{x e IRE Ix satisfies (i), (ii), (iii), (iv) of (1.1)},
conv{x e IRE Ix satisfies (i), (iii), (iv) of (1.1)}

are the polytopes associated with the 2NCON and 2ECON network design problems.
(Above, "conv" denotes the convex hull operator.) We say that F C_ E is feasible for
one of these polytopes if XF is.

Related problems have been investigated previously. A general integer linear
programming approach to network design problems with connectivity requirements
is presented in [GM] along with a preliminary study of these problems from a poly-
hedral point of view. We shall make several references to this work in what follows.
[CFN] study the dominant of the 2ECON(G; r) polytope in the special case where
r {2}y. [MMP] study the 2ECON(G; r) and 2NCON(G; r) polytopes in the special
case where r {2}V, and G is a complete graph with the edge weights satisfying the
triangle inequality. They show that in this case the optimization problems are the
same over both polytopes and then give a certain type of characterization of the
optimal solutions.

Let us now introduce some connectivity functions and some notation concerning
"essential" edges and dimension of polyhedra. Let G (V, E) and r E {0, 1,2}y be
given; we say that e E is essential with respect to 2ECON(G; r) if 2ECON(G-
e; r) ; similarly we say e is essential with respect to 2NCON(G; r) if 2NCON
(G e; r) q}. In other words, e is essential if its deletion results in a graph such that
one of the survivability requirements cannot be satisfied. We denote the set of edges
of E that are essential with respect to 2ECON(G; r) by 2EES(G; r), and the set of
edges that are essential with respect to 2NCON(G; r) by 2NES(G; r). Clearly, for
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all subsets F c_ E\2EES(G; r), 2EES(G; r) is contained in 2EES(G- F; r) (similarly
with 2NES(G;r)). Let dim(S) denote the dimension of a set S _c IRn, i.e., the
maximum number of affinely independent elements in S minus 1. One of the results
proved in [GM] says that the polyhedron 2ECON(G; r) is full-dimensional if and only
if 2EES(G; r) is empty, and also that 2NCON(G; r) is full-dimensional if and only if
2NES(G; r) is empty.

Let G (V, E) be a graph and W c_ V with IWI _> 2, and let G= (V, E) be the
simple graph underlying G. We set

,(G, W) :- minimum cardinality of a subset F of E, such that two nodes of W
are disconnected in G- F;

a(G, W) := minimum cardinality of a set S U F, where S c_ V and F C_ E, such
that two nodes of W are disconnected in G (S U F).

If IWl < 2, then A(G, W) and a(G, W) are defined as oc. If G with node set Va
is a subgraph of some graph H with node set VH and W c_ VH we will also write

,k(G, W) instead of )(G, WCVa). We will use these functions frequently in two special
situations. To shorten notation in these cases, we introduce the following definitions:

a (a) := a(a, :=

where ld := {v E V Ir. >_ i}, i o, 1, 2. So A0(a)is nothing but the edge-connectivity
of G, and n0(G) is the node-connectivity of G.

Throughout this paper we make the following assumptions:

(1.2)

Let G- (V, E) and r e be given.
(i) r {0, 1, 2}y and at least two different nodes s, t satisfy

rs rt 2;
(ii) if we consider the 2ECON problem we assume G to be

two-node connected and ,2(G) >_ 3;
(iii) if we consider the 2NCON problem we assume G to be

two-node connected and a2 (G) _> 3.

We will say that (a, r) satisfies (1.2) and mean that the graph a (V, E) and the
vector r of connectivity types satisfy conditions (i), (ii), and (iii). If (i) does not
hold, then the 2ECON and the 2NCON problem reduces to the Steiner tree problem
for which more specialized investigations can be (and have been) made. We want to
exclude this case from the present investigation. It also does not occur in the practical
problems we have in mind. One consequence of (ii) and (iii) of (1.2) is that the 2ECON
or 2NCON problem contains no essential edges; hence the associated polyhedron is
full-dimensional. We further justify assumptions (ii) and (iii) in 2.

In 2 and 4 we present some decomposition and lifting results that simplify the
later discussions. In 3 we investigate which of the basic inequalities given in (1.1)
define facets for 2ECON, respectively, 2NCON. In 5-8 we present several classes
of facet-inducing inequalities for 2ECON and 2NCON. These include partition, node-
partition, two-cover, and comb inequalities.

We will not discuss the separation problems associated with the classes of inequal-
ities introduced in this paper. Let us just mention here that the cut and node-cut
inequalities can be checked in polynomial time, but for all other classes of inequal-
ities to be presented in this paper the separation problem is NP-hard (as is shown
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in [GMS]). Based on the polyhedral investigations presented in this paper we have
designed cutting plane algorithms for the 2ECON and the 2NCON problems. A short
summary of our computational results is given in 9. The details can be found in
[GMS] and [S].

2. Decomposition. The problem of finding a cost-minimal network for the
2ECON problem can be decomposed into at least two independent problems if the
underlying graph G contains an articulation node v disconnecting two nodes of type
at least 1. The subproblems are solved on the two-node-connected components of G
with the same cost function and the same connectivity types r; only the connectivity
type of the articulation node v may have to be adjusted. The 2ECON problem may
also be decomposed into independent subproblems if G contains two edges e, f, such
that in G-{e, f} two nodes of type 2 are disconnected. Another simple decomposition
is possible for the 2NCON problem if the graph G contains two nodes u, v so that in
G- (u, v} two nodes of type 2 are disconnected. These and other more complicated
decompositions are described in more detail in [GMS].

Observe that using the above decompositions, any 2ECON or 2NCON problem
with essential edges may be decomposed into problems without essential edges. This
is the reason why we restrict ourselves to graphs G and connectivity types r for which
our general assumptions (ii) and (iii) of (1.2) hold. This implies also that 2ECON(G; r)
and 2NCON(G; r) are full-dimensional [GM].

There is another (technical) reason why we restrict ourselves to full-dimensional
polyhedra here. If polyhedra are not full-dimensional, proofs often become more
involved technically and statements about nonredundancy of certain systems become
quite ugly due to the necessity to exclude equivalent inequalities. This is also true in
our case. It is not difficult to derive the results for the lower-dimensional cases from
the results presented later. But the statements of these theorems are often rather
complicated and we want to avoid unnecessary technicalities.

3. Basic facets. In this section we investigate under which conditions
the cut inequalities (1.1)(i), the node-cut inequalities (1.1)(ii), and the trivial in-
equalities (1.1)(iii) define facets for 2ECON(G; r), respectively, 2NCON(G; r).

An inequality aTx

_
a is valid with respect to a polyhedron P if P C_ (x

aTx

_
c}; the set Fa :-- (x e p laTx } is called the face of P defined by

aTx <_ . If dim(Pc) dim(P) 1 and Fa q}, then Fa is a facet of P and aTx <_ (
is called facet-defining or facet-inducing.

The following theorem follows from Theorem 3.3 in [GM] and characterizes which
of the trivial inequalities (1.1) (iii) define facets.

THEOREM 3.1. Let (G, r) satisfy (1.2).
(a) xc _< 1 defines a facet of 2ECON(G; r) and of 2NCON(G; r) for all e E E.
(b) xc >_ 0 defines a facet of2ECON(G; r) (respectively, 2NCON(G; r)) for e E,

if and only if for every edge f e the polytope 2ECON(G- (e,f};r) (respectively,
2NCON(G (e, f}; r)) is nonempty.

The next theorem characterizes the cut inequalities (1.1)(i) that define facets.
THEOREM 3.2. Let (G, r) satisfy (1.2) and let W c_ V with W V.
(a) Suppose con(W)- 2. Then x(5(W)) >_ 2 defines a facet of 2ECON(G;r) if

and only if
(al) G[W] and G[V\W] are connected;
(a2) AI(G[W])_> 2 and )(G[V\W]) >_ 2;
(a3) e is a bridge of G[W]. Then f is a bridge of G[V\W], U, V’ are the node

sets of the two components of G[W] e, and U, U’ are the node sets of the two
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components of G[V\W] f; and if r(U) r(U) 2 (implying r(U’) r(U’) 0),
[u >_ 1.

(b) Suppose con(W) 1. Then x((W)) >_ 1 defines a facet of 2ECON(G; r) if
and only if

(bl) G[W] and GIg\W] are connected;
(52) AI(G[W])> 2 and A(G[V\W]) > 2;
(b3) A2(G[W])_> 3 and )2(G[V\W]) >_ 3.
(c) Suppose con(W) O. Then x(5(W)) >_ 0 does not define a facet of 2ECON

(G; r) or of 2NCON(G; r).
(d) Suppose con(W)-- 2. Then x(5(W)) >_ 2 defines a facet of 2NCON(G;r) if

and only if
(dl) the conditions (a), (a2), and (a3) of (a) are satisfied;
(d2) a2(G[W])_> 2 and a2(G[V\W]) >_ 2;
(d3) u is an articulation node of G[W] and fi is an articulation node of G[V\W],

and ifU and V are node sets of components ofG[W]-u and G[V\W]-, respectively,
such that r(U) r((J) 2, then I[U" ]1 > 1, and (because of (d2))all other
components of G[W] u and G[V\W] do not contain nodes of type 2;

(da) neither .for S W nor for S V\W does the following situation occur:
There are an edge e E E(S) and nodes wl, w2 S (not necessarily distinct) and
a node w3 e V\S so that there exists a component ($1, E) of (G[S] e) wl, a
component ($2, E2)of(G[S]-e)-w2, and a component ($3, E3)ofG[V\S]-w3 with
r(S1) -r(S2)- r(S3) 2, S 3 $2 -, such that in G- e there is no edge between
Si and Sj for all j, i, j (1, 2, 3} (see Fig. 3.1 .for an illustration; dashed lines
denote nonexisting edges);

(d5) for S- W and S-- V\W the following has to hold: if V\S has exactly two
neighbors in S, then one of these two nodes is the only node of type 2 in S.

(e) Suppose con(W) r(W) 1. Then x(5(W)) > 1 defines a facet of 2NCON
(G; r) if and only if

(el) the conditions (bl), (b2), and (b3) of (b) are satisfied;
(e2) a2(G[V\W] e) >_ 2 .for all e e E(V\W).

w v\w

FG. 3.1

Proof. We give a proof of (d). (The proofs of (a) in the general case, (b), and (e)
use the same ideas and are thus omitted. (c) is trivial.)
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We first show that if one of the conditions (dl)-(dh) is not satisfied, then the
cut inequality x(5(W)) >_ 2 does not define a facet. Necessity of (dl) is seen easily
(see, e.g., Corollary 6.7 of [GM]). Suppose (d2) is violated. Let u be an articulation
node of G[W], and let ($1, E), ($2, E2) be two components of G[S]- u with r(S1)
r(S2) 2. Then x(5(W)) _> 2 can be written as the sum of the node-cut inequalities
x(5G-u(S1)) _> 1 and x(5G-u(S2)) _> 1 plus possibly some nonnegativity constraints.
Therefore, x(5(W)) >_ 2 does not define a facet. If (d3) is violated there are nodes
u, fi and node sets U, with the indicated properties and [U D] q}. In this
case the cut inequality can be written as the sum of two other node-cut inequalities
x(5v_,(U)) _> 1 and x(5G_a(V)) _> 1. Hence x(5(W)) _> 2 does not define a facet.

Now suppose we have the situation excluded by (da) for S W. In this case, it
is not possible to construct a feasible solution with x(5(W)) 2 and x 0, because
any feasible set not using e would either have node w3 as an articulation node or
use three edges of 5(W). Therefore, all feasible sets C with IV N 5(W)I 2 have to
use e, so the face defined by x(5(W)) >_ 2 is contained in the face defined by x <_ 1.
Since 2NCON(G; r) is full-dimensional, these faces cannot be the same. Therefore,
x(5(W)) >_ 2 does not define a facet.

Suppose (d5) is violated. Let the two neighbor nodes of V\S in S be called u
and v. If, in contradiction to (dh), there is at least one node of type 2 in S\{u, v}
or ru rv 2, then x(5(W)) _> 2 can be written as the sum of the two node-cut
inequalities x(5G_u(S\{u})) _> 1 and x(5G_v(S\{v}))>_ 1.

Now let the conditions of (d) be satisfied for some inequality aTx := x(5(W)) >_ 2.
Let bTx

_
be a facet-defining inequality such that the face Fa induced by aTx

_
2

in 2NCON(G; r) is contained in the facet Fb induced by bTx

_ . Our aim is to show
that b is a positive multiple of a, which implies that Fa is identical with the facet Fb.

Let us first state some conditions under which for a given e, f E 5(W), the
incidence vector of Ce,f := E(W) U E(V\W) U {e, f} is feasible for 2NCON(G; r) and
hence in Fa C_ Fb. Assume that both W and V\W contain more than one node of
type 2. (In the other case, the proof has to be modified a little.) (1) If e, f are to
induce a feasible C,f they may not have a common endpoint (unless this is the only
node of type 2 in W or V\W, which we excluded). (2) If we denote the two endpoints
of e and f in W with u and v, respectively, then for any node s of type 2 in W there
must exist an Is, u]-path and an Is, v]-path that are node-disjoint; the same for V\W.

We can rewrite these conditions in the following way: Let U denote a two-node-
connected component of G[W] containing some node of type 2 of G[W]. Note that by
condition (d2), U must then contain all nodes of type 2 in W. Now remove from U the
set of all articulation nodes of G[W]. Let a node set U (in G[V\W]) be defined in the
same way as V in G[W]. Condition (2) says that e and f may not be incident to the
same component of G[W]- V and G[V\W]- U. All in all, e and f must constitute
a matching of size 2 in the graph G derived from G by shrinking all components
of G[W]- V and G[V\W]- V and deleting all edges except those in 5(W). The
maximum matching possible in this graph has size at least 3, otherwise there are two
nodes covering all edges in G’, which translates to condition (1.2)(iii), or (d3) or (dh)
of Theorem 3.2 being violated.

Now we are ready to show that b has the same value for all e E 5(W). Assume
that both W and V\W contain more than one node of type 2. G has a matching
with three edges, say, e, f, and g. Since the incidence vectors of C,I, CLg, and Cg,e
lie in Fb, we have b bi bg . For any fixed edge t e 5(W)\{e, f,g} either
{t, e}, {t, f}, or {t, g} constitute a matching in G’, say, {t, e}. Therefore, the incidence
vectors of both Ct, and CI, are in Fb, and we have bt bf . This way we can
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prove b /for all t E 5(W).
To prove be 0 for all e E E(W) we need to construct a set C c_ E with XC Fa

and e C for some fixed e E(W). Since xcu{e} is also in Fa we know be 0.
Assuming again that both W and V\W have at least two nodes of type 2, we try for
a given e vlv2 e E(W) to find f, g 5(W) constituting a matching of G’, so that
C :-- Cl,g\(e} is feasible for 2NCON(G; r). If a2(G[W]- e) _> 2, we can find such f,
g e 5(W) inducing a feasible C,g\(e} in G by similar arguments as above. Since the
incidence vectors of Ci,a\(e} and CI,g are in Fb, we have be 0.

Now suppose a2(G[W]- e) 1. Consider the tree structure of the two-node-
connected components and the articulation points of G[W]- e. Since a2(G[W]) >_ 2
and a2(G[W]- e) 1, the endnodes vl and v2 of e lie in two different two-node-
connected components. Furthermore, there is a Ivy, v2]-path in G[W]- e that touches
all two-node-connected components containing nodes of type 2 and all articulation
nodes of type 2. Let w be an articulation node of G[W] -e so that the component
of (G[W] e) w containing one endnode v of e also contains some node of type 2
(possibly vl), and so that the node set S of this component is as small as possible
with respect to this property. Similarly, find an articulation node w2 and a component
of (G[W] e) w2 with node set $2 containing v2 and some node of type 2, so that
IS21 is as small as possible. S and 5’2 are disjoint. Since G satisfies (1.2) there has
to be some edge f 5(W) leaving S1 and an edge g 5(W) leaving $2. Since V\W
has two nodes of type 2, condition (dd) ensures that f and g may be chosen without
common endpoint, such that in G[V\W] there is no articulation point separating the
two endpoints of f and g from some node of type 2. Because S and $2 are connected
in G[W]- e by a path touching all two-node-connected components of G[W]-e
containing nodes of type 2, the set C :-- CLg\(e} defined above is feasible. Therefore,
be 0. So we have proved that b a. Since Fb cannot define a facet if b _< 0, we
have /> 0. So x((W)) _> 2 and bTx

_
define the same facet Fa Fb. [:]

The following theorem characterizes which of the node-cut inequalities (1.1)(ii)
define facets for 2NCON(G; r).

THEOREM 3.3. Let (G,r) satisfy (1.2) and let a node z V, and a set W c
Y\(z} with W Y\(z} and r(W) 2, r(Y\(W t2 (z})) 2 be given. Denote
by , 1, 2, the set of nodes in Y of type at least i, and let W V\(W

The node-cut inequality x(5G-z(W)) >_ 1 defines a facet of 2NCON(G;r) if and
only if

(a) G[W] is connected;
(b))(G[W (_J (z}], Vl [.J {z})

_
2;

(c) >
(d) u e W is an articulation node of G[WU{z}] separating two nodes of V2tJ(z},

and S c_ W is the node set of a component of G[W t2 (z}] u with r(S) 2; then
[W\S ITV] and r(W\(S (2 (u})) <_ 1;

(e) the following situation does not occur: there are an edge e e E(W) and two
e w

has a component with node set Si where Si c_ W and r(Si) 2; furthermore,
and e [5’1 $2] (see Fig. 3.2 for an illustration; dashed lines denote nonexisting

(f) conditions (a), ..., (e) also hold when W is replaced by W.
Proof. The proof is analogous to the proof of Theorem 3.2.

4. Lifting theorems. We now present conditions under which valid inequalities
(respectively, facets) for the 2ECON and 2NCON polytopes on a graph ( can be lifted
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FIG. 3.2

to valid inequalities (respectively, facets)^for higher-dimensional 2ECON and 2NCON
polytopes on a graph G that contains G as a subgraph. These results simplify the
proofs to be presented in the next sections.

Some of the results can be treated for the 2ECON and 2NCON polytopes simul-
taneously. Thus we introduce a slightly more general network design model that com-
bines edge- and node-connectivity features. Let G (V, E) be a graph, r E {0, 1, 2}y
be the vector of connectivity types, and Z be some subset of V. (In this section we do
not necessarily assume that (G; r) satisfies (1.2).) We define the 2CON(Z) problem
to be the network design problem where between each pair of distinct nodes s and t
at least min(rs, r) edge-disjoint paths are required that have no node of Z\{s, t} in
common. Note that for Z q} only edge-disjoint paths are required, so in this case

2CON(Z) is the 2ECON problem. For Z V this is the 2NCON problem. This
general model is introduced only for technical reasons. Throughout the rest of this
paper we will be interested only in the cases Z q} and Z V.

The 2CON(Z) problem can be formulated as an integer linear program in the
following way:

(4.1)

min Z cijxij

subject to
O) x((W)) > con(W)
(ii) x(6c-z(W)) >_ 1

(iii) 0 _< xj <_ 1
(iv) xij integral

for all W c_ V, q} :/: W :fl V;
for all z Z, and for all W

_
V\{z}, # W =V\{z} with r(W)= 2 and r(V\(W U {z}))= 2;

for all ij E E;
for all ij E.

The polytope 2CON(G; Z; r) is then defined as the convex hull of all x IRE

that satisfy (i),...,(iv) of (4.1). As mentioned above, 2CON(G; q; r) 2ECON(G; r)
and 2CON(G; V; r) 2NCON(G; r).

The polytope 2CON(G; Z; r) is not necessarily full-dimensional. In the later sec-
tions we only apply the results of this section in the case dim(2CON(G; Z; r)) ]E[.
So we can avoid treating all the technicalities arising in the low-dimensional case, and
we thus assume throughout this section that 2CON(G; Z; r) has dimension [E[.
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In Lemma 4.2 we derive valid inequalities for the 2CON(G; Z; r) polytope from
valid inequalities for the 2CON(GIN; Z; r) polytope.

LEMMA 4.2. Consider the 2CON(G; Z; r) polytope and let W c_ V\Z. Let the
node w in G/W that represents node set W inherit its connectivity type from W
by rw :- con(W). /f 5Tx b is a valid inequality for 2CON(G/W;Z;r) where
W C_ V\Z, then aTx >_ b is valid .for 2CON(G; Z; r), where

he--he for e e E(G/W) and ae O for e e E(W).

We say that aTx

_
b is obtained from 5Tx

_
b by expanding w to W.

Proof. We first remark that the lemma is true for any of the inequalities (i), (ii),
or (iii) of (4.1). The reason is that the expansion of any inequality of type (i), (ii),
or (iii) is again of the same type. (Note that since Z V) W q}, a shrunk node w can
never be chosen as a node z in a node-cut inequality (ii).)

Since 2CON(GIN; Z; r) is the convex hull of the integral solutions of (i), (ii), and
(iii) of (4.1) every valid inequality for 2CON(G/W; Z; r) can be obtained by taking
nonnegative combinations of the inequalities (i), (ii), and (iii), rounding the left- and
right-hand sides up and recursively repeating this procedure. (This so-called cutting
plane proof is described in [Chv]; see also [Sch, Cor. 23.25].) It is easy to see that
such a validity proof of 5Tx

_
b from the inequalities (i), (ii), and (iii) of (4.1) for

2CON(GIN; Z; r) yields a validity proof of aTx

_
b by applying the same nonnegative

combinations and rounding operations to the associated expanded inequalities, since
combining and rounding expanded inequalities produces expanded inequalities, v1

The following lemma gives a technical condition for an "expanded" inequality
derived by Lemma 4.2 to define a facet of 2CON(G; Z; r).

LEMMA 4.3. Consider the 2CON(Z) problem given by (G,r) satisfying (1.2)(i)
and let W be a subset of V\Z with G[W] connected. Let the node w in G/W
(representing the node set W) inherit its connectivity type from W by rw :- con(W).
(Note that (G/W, r) does not necessarily satisfy (1.2)(i).)

Let the inequality 5Tx >_ a > 0 be valid .for 2CON(GIN; Z; r) and let aTx

_
be the inequality (valid for 2CON(G; Z;r)) obtained from 5Tx >_ a > 0 by expanding
node w Z to W C_ V(G).

Denote by Fa the face of the p2lytope P "= 2CON(G; Z; r) induced by aTx

_
o

and by Fa the face of the polytope P := 2CON(GIN; Z; r) induced by 5Tx >_ a.

Fa is a facet of P if and only if the following conditions hold:
(a) For any e e E(W) there exists a set C c_ E(G/W) with X e Fa so that the

incidence vector of t2 E(W)\{e} lies in Fa.
(b) There exist s := IE(G/W)I sets Ci e E(G/W), i 1,..., s, with Xc* e Fa

so that
(bl) XCUE(w) E Fa, and
(b2) the XC* are ajfinely independent.
Proof. Suppose that (a) and (b) are satisfied. We want to show that Fa is a

facet. (Note that (b) implies that Fa is a facet.) Let bTx

_
define a facet Fb of P

that contains Fa. For any e E E(W), condition (a) provides a set C with e C
and XC Fb. Therefore, xcu{e} Fb and be 0 also. Condition (b) implies that
vector b has to satisfy bTxCtE(W) for 1,..., s. Since we have just proved bT

to be (0,/T) with/ IRE(a/W), this means [TxC for i 1,’’’, s. The affine

independence of the dim(/5) vectors xc* implies that DTx >_ defines a facet of/5,
necessarily the same as Fa. Therefore, (T, fl) is a positive multiple of (&T, a), and
(bT, ) is a positive multiple of (aT, a). So Fa defines a facet.
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On the other hand, if we know that aTx

_
o defines a facet of P, then for each

e E E(W) there must exist a set C with e
P" xe 1. If we shrink node set W to node w in the graph defined by C we arrive
at a set C := C\E(W) whose incidence vector satisfies 5Tx
because con(w) con(W), w may be an articulation node in C, but this does not
matter because w Z. The set C U E(W)\(e} is feasible for P because it contains
the feasible set C and because G[W] is connected. Therefore, (a) is satisfied.

If Fa is a facet of P, there exist IEI affinely independent vertices XC in Fa, where
Ci c_ E is feasible for P, for i- 1,..., IEI. We set xi := Xc for i 1,..., IEI. There
must be a subset of IE(G/W)I affinely independent vectors among &l,"’, &IEI, where
&i is derived from xi for i 1,..., lEvi by deleting the components e E(W). The
&, for i 1,..-, IEI, are feasible for P because the deletion of the E(W)-components
of a vector x in (0, 1}E is equivalent to the contraction of W in the subgraph (V, Fx)
of G defined by x. So the affinely independent subset of (& i 1,..., IEI} satisfies
(bl) and (b2).

The conditions of Lemma 4.3 can be used to derive some conditions on G[W] that
are of a more graph-theoretical nature and sufficient for an "expanded" inequality to
define a facet of 2ECON(G; r).

LEMMA 4.4. Consider the 2ECON problem given by (G,r) satisfying (1.2)(i).
Let W C_ Y with W V, and let w (of type con(W)) be the node of G/W
representing W. Consider an inequality 5Tx >_ b that is facet-defining .for the poly-
tope 2ECON(G/W; r), and consider the inequality aTx >_ b (valid .for 2ECON(G; r))
derived from 5Tx >_ b by expanding node w to W.

g G[W] n  x{2, +  hen >_ b a oI
2ECON(G; r).

Proof. Let F and Fa be defined as in Lemma 4.3. We will check conditions
(a) and (b) of Lemma 4.3. The connectivity conditions on G[W] imply that for
any e E(W) and 7 c_ E(G/W) that is feasible for 2ECON(G/W; r), the sets
C[J E(W)\{e} and UE(W) are feasible for 2ECON(G; r). Since Fa is a facet, there
are enough affinely independent X to satisfy condition (b) of Lemma 4.3. [:]

Usually much weaker conditions on the edge-connectivity of G[W] are already
sufficient for an expanded inequality aTx

_
b to define a facet of 2ECON(G; r). But

this leads to further technicalities concerning assumptions on the structure of the
graph and properties of &Tx >_ b; see, for instance, Theorem 3.2(a) and (b).

The next lemma gives a sufficient condition for an expanded inequality to define
a facet of 2NCON(G; r). (Note that any inequality valid for 2CON(G; Z; r) is also
valid for 2NCON(G; r).)

LEMMA 4.5. Consider the 2NCON problem given by (G, r) satisfying (1.2)(i). Let
Z C_ V and W c_ V\Z with 0 W Y and r(W) 1, and let w (of type 1) be the
node of G/W representing W. Consider an inequality 5Tx >_ b that is valid .for the
polytope 2CON(G/W; Z; r) and facet-defining for 2NCON(G/W; r).

If G[W] is two-edge-connected, then the inequality aTx

_
b derived from 5Tx >_ b

by expanding node w to W defines a facet of 2NCON(G; r).
Proof. First, aTx

_
b is valid for 2CON(G; Z;r) by Lemma 4.2 and hence for

2NCON(G; r). To prove that aTx

_
b also defines a facet of 2NCON(G; r), we apply

Lemma 4.3 with P 2CON(G/W; V; r) and P :=2CON(G; V; r). Conditions (a)
and (b) are still sufficient for aTx

_
b to define a facet of P, because of the fact that

w Z is not used in the sufficiency part of Lemma 4.3. So we have to check (a)
and (b) of Lemma 4.3, which is easy.

Our final lifting result presents conditions under which a valid inequality for
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2CON(G; Z; r) on a complete graph G (V, E) can be extended to the graph with a
new node w of type at least 1 added, along with all of the edges incident between w
and V; we denote such a graph by G / w.

LEMMA 4.6. Consider the 2CON(Z) problem given by a graph and node types r
satisfying (1.2)(i), where (V,E) is a complete graph with two parallel edges uv

for each u, v U with u v. Let aTx

_
be a valid inequality for 2CON((; Z; r)

with & >_ O. Let W c_ \Z be a node set with r(W) 2 and ( some nonnegative value
so that either &e ( .for all e e (W) or IWI 1.

We define an inequality aTx

_
b on the graph G := +w with rw := 1 by setting

b’=/,
ae &e for all e ,,

auw ( .for all u W,
auw flu "= max{c, max{h,., v e W}} for all u W.

If auw + aw >_ ( + any .for all distinct nodes u, v W, then aTx >_ b is valid for
2CON(G;Z;r).

Note that in Lemma 4.6 the restriction to complete graphs is no restriction at all,
because any inequality valid for 2CON(G; Z; r), where G is a complete graph, is also
valid if G is replaced by some subgraph (V, F). In the lemma we need completeness
of ( to compute the /u correctly. Also, we can restrict ourselves without loss of
generality to 5 >_ 0 because it is easy to see that any inequality 5Tx >_ that is
facet-defining for 2CON(; Z; r) (except -xe >_ -1) has nonnegative coefficients.

Proof. We will assume that rw 1, because validity of an inequality in this case
implies its validity if r 2. Assume further that aTx >_ b is not valid, i.e., that there
exists an edge set C that is feasible for 2CON(G; Z; r) and does not satisfy aTxC >_ b.

(1) If there is an edge uw E C with u E W, we contract node set {u, w} to node u.
The resulting subgraph of ( with edge set C\{uw} is feasible for 2CON(G; Z; r). Note
that &vu <_ av for all v V. Therefore, &TxC/{u,} <_ aTxC --ao < b- c-/. But
then 5Tx >_ [ is not valid for 2CON((; Z; r), a contradiction.

If C uses no edge of [W" {w}] q C, we will show how to replace C by some set
containing an edge in [W" {w}], such that aTxC’ <_ aTxC < b. So we can apply the
argumentation above to derive a contradiction to the validity of 5Tx >_

(2) Suppose all edges of 5(w)N C were bridges of (V, C). Since w is connected
to W in C, there must be a bridge uw of (V, C), which separates w from some node
v W. The set C’ :- (C\{uw})t {vw} is feasible for 2CON(G; Z; r) and contains
an edge of [W" {w}]. Moreover, aTxC’ aTxC --auw + avw <_ aTxC < b.

Now suppose there are edges of 5(w) fq C that are not bridges of (V, C). Define U
as the set of nodes that are incident to nonbridges of C (the so-called two-connected
part of C). U must contain all nodes of type 2. By assumption, w belongs to U.

(3) Assume that w is not an articulation node of (V, C) disconnecting two nodes of
type 2. The case that w is an articulation node is treated separately. Since r(W) 2,
there exists a node s W of type 2, and since s and w are in U, there exist two
edge-disjoint Is, w]-paths in C that do not coincide in any node z Z. Let u, v E U
be the nodes adjacent to w on these two paths. If u v, we eliminate one of the two
wv-edges. This can be done without destroying feasibility of C because w is not an
articulation node separating two nodes of type 2 and because rw 1. Also, aTxC
does not increase with this operation, since a _> 0. Now we are either in the case that
5(w) C contains only bridges of (V, C) (proceed with part (2) of the proof), or we
construct two other Is, w]-paths that lead to different nodes u v.
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Now we show that C’ (C\(uw, vw})(_J {ws, uv} is also feasible. Clearly C’ is
connected, so we only have to check for bridges and articulation nodes. Suppose
that e is a bridge of (V, C’) separating two nodes of type 2. In C’\(e}, node s is
connected to u and v by at least one of the two edge-disjoint paths and edge uv. If
e ws, all four nodes w, s, u, v lie in the same component (S,F) of (V, C’\(e}).
Since C’ N 5(S) C C i(S), edge e is also a bridge in (V, C) separating two nodes
of type 2. So e must be ws. But (V, C) w is a subgraph of (V, C’) w, and w is
not an articulation node of (V, C). Now suppose that z E Z is an articulation node
that separates two nodes of type 2 in (V, C’) but not in (V, C). z s need not be
considered, because s Z. The remaining cases lead to a contradiction similar to
the case in which e is a bridge. So C is feasible for 2CON((; Z; r). C also satisfies

aTxC’ < b because aTxc’ aTxc (auw d- avw auv) -+- aws <_ aTxC oz d- oz.

(4) The last remaining case in our transformation of C is the case in which
w is an articulation node of (V, C) separating two nodes of type 2. Let u, v E U
be nodes adjacent to w lying on different sides of (V, C)- w. Replace C by C
(C\(uw, vw})CJ (uv}. C’ is feasible, aTxC’ <_ aTxC, and (V, C’)- w contains one
component less than (V, C) -w. Ultimately, we reach a set C where w does not
separate any nodes of type 2, and we can apply one of the earlier cases. Thus, we
have proved that if aTx )_ b is not valid for 2CON(G; Z; r), then also 5Tx >_ b is not
valid for 2CON((; Z; r).

The next theorem gives sufficient conditions for aTx >_ b to define a facet.
THEOREM 4.7. Consider the situation in Lemma 4.6, where we have an inequality

5Tx

_
valid for 2CON(Kn; Z; r), and where (Kn, r) satisfies (1.2)(i). Let W, w with

r 1,^oz >_ O, be defined as in Lemma 4.6. Let aTx >_ b be the inequality derived from
&Tx >_ b by the formula in Lemma 4.6. Furthermore, let G (V, E) be a subgraph of
Kn+l with n + 1 nodes, and define as G- w.

Then, for any Z D_ Z, the inequality aTx

_
b defines a facet of 2CON(G; Z; r)

if the following conditions hold:
(a) 5Tx >_ defines a facet of 2CON(; Z; r);
(b) for all u q W with uw E and auw > oz there exists a node v W with

auw auv and uv, vw E;
(c) there exist two distinct nodes u, v with auv avw auw oz, and uv, vw,

uw E;
(d) all nodes u with uw E and auw oz have type at least 1.

Proof. First, note that aTx >_ b is valid for 2CON(G; Z; r) because it is valid
for 2CON(G; Z; r) by Lemma 4.6. We prove the theorem by exhibiting IEI affinely
independent vectors in Fa :-- (x
2CON((, Z’; r) &Tx }.

Let f vw be an edge af oz and rv k 1. This edge exists by condition (d).
Then any set C_/ feasible for Fa can be enlarged to a set C c_ E feasible for Fa by
adding f. This way we can create I/1 affinely independent vectors in Fa. Now we want
to exhibit Ii(w)l- 1 sets Ck with xck Fa. The Ck are characterized by the fact that
Ck contains an edge ek 6(w)\{f} that is not contained in any of the previous Ci,
i 1,..., k- 1. This fact implies that each xck will be affinely independent from
all xc, i 1,---,k- 1, and the I/1 vectors already found in Fa. The Ck are
constructed as follows. Order the edges in i(w)\{f} as el, e2, etc., by increasing
he-values, so that the edges e with ae oz come first. Now, for an edge ek e 5(w)\{f}
with a(ek) oz and ek VkW, let ( C_ / be a set with incidence vector in Fa and set
C C U {ek}. For an edge e uw e i(w)\{f} with au > oz, let uv be the edge
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with av auw, existing by condition (b). Let c_/ be a set with X5 E Fa, which
uses uv. The incidence vector of the set Ck :--- ((\{uv})U {uw, wv} is then in Fa.
Therefore, we can create the proposed [5(w)[- 1 sets Ck.

We still have to exhibit one more vector in Fa that is independent from all the
others. By condition (c) there is a triangle uv, vw, uw E with ae a for all triangle
edges. As before, there is a set with X5 Fa and uv . The incidence vector of
C :--- (C\{uv})U {uw, wv} is affinely independent of all the others already found in
Fa, because these all satisfy x([{w} S]) 1 for S {u uw e E, aw a}. So we
have found IE[ affinely independent vectors in Fa. [:]

5. Partition inequalities for 2ECON and 2NCON. In this section we in-
troduce a class of inequalities that is motivated by the partition inequalities for the
connected subgraph polytope (see [GM]), and that generalizes cut inequalities.

DEFINITION 5.1. Let G (V,E) be a graph and r (0, 1,2}y. We call a
collection W1,..., Wp of subsets of V a proper partition of V if

W#O,i-1,...,p,
WiNWj-O, l <_i <j <_p,
p=W V,

r(Wi) >_ 1, i- 1,...,p.
The partition inequality induced by a proper partition W1,..., Wp is given by

ip
>

i=
p-1

if r(Wi) 2 for at least two node sets Wi,
otherwise.

See Fig. 5.1 for an illustration of a partition inequality with four node sets W,. , W4.
Here and in all following illustrations, node sets W with r(W) 2 are depicted by big
squares, and node sets W with r(W) 1 are depicted by big circles. Nodes of types
2 and 1 are depicted by small squares and circles, respectively.

FIG. 5.1

The following observation follows immediately from the definition.
Remark 5.3. Any partition inequality (5.2) induced by a proper partition is valid

for 2ECON(G; r) and 2NCON(G; r).
Note that a partition inequality induced by a proper partition with p 2 is

nothing but a cut inequality x(5(W)) >_ con(W). The next observation indicates that
we cannot expect to obtain a useful characterization of those partition inequalities
that define facets.
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Remark 5.4. Checking whether a partition inequality supports 2ECON(G; r) or
2NCON(G; r) is NP-complete.

Proof. The problem is obviously in NP. Let G (V, E) be a graph and rv 2 for
all v E V. Then the sets (w}, w E V, form a proper partition of V and the induced
partition inequality reads x(E) >_ IVI. Thus there is a point in 2ECON(G;r) or
2NCON(G; r) that satisfies x(E) >_ IYl with equality if and only if G is Hamiltonian.
This implies the remark. D

We will now derive a sufficient condition for a partition inequality to define a
facet.

THEOREM 5.5. Let G (V, E) be a graph, r (0, 1,2}V, and let W1,..., Wp,
p >_ 3, be a proper partition (see (5.1)). Let (,J) be the graph G/W1/.../Wp
where the Wi are shrunk to nodes wi of connectivity type (wi) :- con(Wi) .for i
1,..., p. Let VI be the set of nodes of type at least 1 in and V2 the set of nodes of
type 2 in . The partition inequality (5.2) defines a facet of 2ECON(G; r) if

3 2;
(b) in G every node o.f type 2 is adjacent to some node of type 1;
(c)
(d) G[V2] is Hamiltonian;
(e) c[w,] +
Proof. The partition inequality (5.2) can be written as x(/) >_ t for the graph (,

where t IIl or IVI- 1, according to whether ( contains nodes of type 2 or not.
If ( contains only nodes of type 1 and ( is two-node-connected (see condition (a)),
the partition inequality x(/) _> I1- 1 defines a facet of the polytope of connected
subgraphs of (. This was shown in [gM]. By our lifting Lemma 4.4 and Theorem
5.5(e), we can expand all nodes wi of G successively to node sets Wi, and thus obtain
a facet of the 2ECQN(G; r) polytope.

Suppose that G contains nodes of type 2. First we show that conditions (a)-(d)
are sufficient for x(/) >_ I’1 to define a facet F of 2NCON((; ). We do this by
constructing I/1 affinely independent vectors in F.

Take some Hamiltonian cycle C of ([V2]. Let G’ (V’,E’) denote the graph
(/V2. Any tree T spanning the nodes of the shrunk graph G may be added to C,
thus creating a set whose incidence vector is in F. There are at least lEVI such
trees with affinely independent incidence vectors. This is true because the inequality
x(E’) _> IY’l- 1 defines a facet of the polytope of connected subgraphs of G’ (see [GM])
if G is two-node-connected. Note that G is two-node-connected because G is two-
node-connected by condition (a), and because ([V\V2] is connected. Hence we can
find lEVI affinely independent vectors of the form XCUT in F.

Now take some cycle edge e C. With the help of conditions (b) and (c) we can
construct a cycle not using e and spanning all nodes of type 2 in G by using the path
C\(e} and a path in G. This new cycle may be augmented by some trees to a feasible
set with incidence vector in F. This vector is affinely independent of all other vectors
constructed so far because these all satisfied x 1. By applying this argument for
each cycle edge successively we can construct IE’I + ICI affinely independent vectors
in F.

For any other edge e uv (V2)\C we want to construct a cycle spanning
all nodes of type 2, and using e but no other edge of/(V2)\C. This can be done
easily by starting with u, going to v, running in some direction along the cycle C to
the neighbor of u, taking a path in E to the neighbor of v on C that is not already
visited, and running along the other half of C to the starting point u. This cycle can
be augmented to a set with incidence vector in F. This vector is affinely independent
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of all the others exhibited so far because all of those satisfied x 0. So we have

IE’I / I(V2)I- I/1 affinely independent vectors in F. This proves that x(/) _> I1
defines a facet of 2NCON(G; ), and hence of 2ECON((; ).

Our partition inequality (5.2) in G can be obtained from x(/) _> I1 by expanding
successively the nodes wi to node sets Wi according to the definition in Lemma 4.2.
Because of Theorem 5.5(e) we can apply Lemma 4.4, and thus the partition inequal-
ity (5.2) defines a facet of 2ECON(G; r). [:l

Remark 5.6. The partition inequality (5.2) defines a facet of 2NCON(G; r) if G
is complete and no node set W with r(W) 2 contains exactly two nodes.

Proof. The proof is the same as for Theorem 5.5 except that in the end we use
Lemma 4.3 instead of Lemma 4.4.

In view of Theorem 3.2 (d), which gives quite complicated necessary and sufficient
conditions for a cut inequality x(g(W)) >_ 2 to define a facet of 2NCON(G; r), we did
not further investigate necessary and sufficient conditions for a partition inequality
(with p > 2) to define a facet of 2NCON(G; r).

The next theorem shows which of the sufficient conditions of Theorem 5.5 are
actually necessary for a partition inequality to define a facet of 2ECON(G; r).

THEOREM 5.7. Let (G,r) and a proper partition W1,. Wp with p >_ 3 be given,
and let and be defined as in Theorem 5.5. The partition inequality (5.2) defines a

facet of 2ECON(G; r) only if
(a) conditions (a) and (b) of Theorem 5.5 are satisfied;
(b) contains nodes of type 2; then contains a cycle C containing all nodes

of type 2;
(c) G[Wi] is connected for 1,...,p;
(d) A1 (G[Wi]) _> 2 for i- 1,...,p.
Proof. The necessity of condition (a) of Theorem 5.5 is easily seen. Suppose that

condition (b) of Theorem 5.5 is violated and that IWI- 1 for all 1,..., p. This
implies that ( G and that there is a node v E V2 that is adjacent only to other
nodes of type 2 in G. Then any set C that is feasible for 2ECON(G; r) with ICI IYl
has to use exactly two edges of 5(v). Otherwise C would have at least two cycles,
and this would imply ICI _> IVI / 1. So the face induced by the partition inequality
x(E) >_ IYl is contained in the face induced by x(5(v)) >_ 2. But since the partition
was supposed to consist of at least three sets, the partition inequality does not define
the same face as the cut inequality. If IWI >_ 2 for some and if Theorem 5.5(b) is

violated, one can argue similarly.
The necessity of conditions (b) and (c) of Theorem 5.7 is easily seen. As for (d),

suppose that some G[W] contains a bridge e so that G[W]- e has two components
with node sets U and W, with r(U) >_ 1 and r(W) >_ 1. In this case our partition
inequality can be written as the sum of xe _< 1 and another partition inequality can
be defined by the same partition as above, except that Wi is replaced by U and
W. [:]

From an algorithmic point of view, Remark 5.4 seems to be bad news. Even worse,
the separation problem for partition inequalities is NP-complete (see [GMS]). But in
practice, using heuristic separation routines, the class of partition inequalities proved
to be very useful in the cutting plane algorithm presented in [GMS]. Usually, partitions
with a small number of node sets were used there, and for small p it is quite likely
that--in our real-world examples--a partition inequality supports 2NCON(G; r).

Moreover, checking the conditions of Theorem 5.7 is easy, and this helps to convert
one partition inequality into another partition inequality that induces a face of higher
dimension than the first one. Indeed, finding cutting planes that induce faces of
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dimension as high as possible is of importance in cutting plane algorithms. We noticed
this clearly in our computational experiments (see [GMS]).

6. Node-partition inequalities. We now generalize node-cut inequalities to
"node-partition inequalities" in the same way as we generalized cut inequalities to
partition inequalities in the previous section. These new inequalities will only be valid
for 2NCON(G; r), but, in general, not for 2ECON(G; r).

Let G (V, E) be a graph and r E (0, 1, 2}y. Let z E V and let W1,..., Wp be a
proper partition (see (5.1)) of V\(z} such that at least two node sets Wi contain nodes
of type 2. The following node-partition inequality induced by z and W1,..., Wp
is given by

I (Zx(hG-z(Wi)) + Zx(hG(Wi))+x([(z} "UieI1Wi])) > p-1,(6.1)
iI2

where Ik :-- (i e (1,... ,p} lr(Wi) k}, k 1,2.
In Fig. 6.1 a node partition inequality is depicted with three sets Wi with r(Wi)

2 and two sets Wi with r(W) 1. Edges with coefficient 0 are depicted by dashed
lines; edges with coefficient 1 are depicted by solid lines.

FIG. 6.1

THEOREM 6.2. The node partition inequality (6.1) is valid for 2NCON(G; r).
Proof. Consider first a node partition inequality induced by a node z and the

partition consisting of all node sets (v), v Y\(z}. Suppose also that rv 2 for
all v e V\{z}. This node partition inequality, x(E(Y\{z})) _> ]Yl- 2, is valid,
because after deletion of a node z the rest of the network should still connect all
nodes v V\{z}. Nodes of type 1 can be added successively to V\{z} by applying
Lemma 4.6 with Z {z}, W V\{z}, and c 1. With Lemma 4.2 all nodes
v V\{z} can be expanded to node sets. In this way, every node partition inequality
is proved to be valid. [:]

The following theorem gives a sufficient condition for the node partition inequal-
ity (6.1) to define a facet of 2NCON(G; r).

THEOREM 6.3. Consider a node partition inequality (6.1) induced by W1,..., Wp.
Let denote the graph (G- z)/W1/.../Wp, where the W are shrunk to nodes w,
i 1,...,p. Let I1 and I2 be defined as in (6.1). The node partition inequality
aTx >_ p- 1 defines a facet of 2NCON(G; r) if
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(a) ( is two-node-connected;
(b) G[Wi U {z}] e is two-node-connected .for all edges e e G[Wi {z}] and for

all i E I2;
(c) G[Wi] is two-edge-connected for all i 11.
Proof. Let conditions (a), (b), and (c) be satisfied. We will show how to con-

struct IEI affinely independent vectors in the face defined by the node partition in-
equality (6.1).

Let E be the set of all edges^whose coefficients in aTx

_
p- 1 are 0. By

condition (a), the graph ( (V,E) contains [/[ spanning trees whose incidence
vectors are affinely independent (see Theorem 4.10 in [GM]). Any such tree T of
can be augmented by E to a feasible set C c_ E for 2NCON(G; r). Feasibility can be
shown as follows. For any two nodes u, v G[Wi (A {z}] (where i 12) there exist,
by condition (b), two node-disjoint paths in (V, C). For u Wi and v Wj (where
i, j E 12 and i j), we construct the following two node-disjoint paths. In (V, C) z,
there exists a path from some node u Wi to some node v Wj. Let u and v have
the property that u is the last node of Wi and v is the first node of Wi encountered
on this path. Since G[Wi ( {z}] is two-node-connected, it contains a Is, u]-path and
a Is, z]-path, which do not have a node except u in common. (If u u, we only
need one path, namely, the Is, z]-path.) Similarly, G[Wj (A {z}] contains a Iv, v]-path
and a [v, z]-path, which are node-disjoint. From these paths we can construct two
node-disjoint [u, v]-paths in (V, C). So for all pairs u, v of nodes we can construct
the required number of paths in (V, C), which proves feasibility of C. Feasibility is
preserved even when some single e E is deleted from C. [:]

The connectivity conditions given in (b) imply that if r(W) 2 for one of the
node sets in the partition, then Wi must contain at least three nodes. This is not at
all necessary. In fact, there exist facet-defining node-partition inequalities where all
node sets in the partition contain exactly one node. Because we need it later on, we
state this result as a lemma.

LEMMA 6.4. Consider a 2NCON problem given by (G, r) and let z be some node
of G. We suppose that G (V, E) is a graph with at least four nodes and rv 2 for
all v e Y\{z}. The node-partition inequality (6.1) induced by the partition of Y\{z}
into node sets {w} for w V\{z} defines a facet of 2NCON(G; r) if z is adjacent to
every node in G.

Proof. This can be proved by considering trees of G- z augmented by certain
edges of i(z). Note that by (1.2)(iii) the graph G is supposed to be three-node-
connected, so there exists a sufficient number of trees of G- z. [:]

Some necessary conditions for node-partition inequalities to define facets of
2NCON(G; r) can be derived from Theorem 3.3 for node-cut inequalities.

THEOREM 6.5. The node-partition inequality (6.1) defines a facet of 2NCON
(G; r) only if

(a) G[W] is connected for all i e I;
(b) AI(G[Wi tA {z}])

_
2 for all i 12;

(c) A1 (G[Wi])
_

2 for all i 11;
(d) A2(G[Wi]) _> 2 for i-- 1,...,p.
Proof. The proof is obvious.
The connectivity conditions given in Theorem 6.5 can be easily checked and are

of some practical use in cutting plane algorithms to derive faces of higher dimension.

7. Lifted two-cover inequalities. The motivation for introducing and study-
ing the next class of inequalities derives from the fact that the two-matching in-
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equalities play an important role in solving the traveling salesman problem; see [GP]
and [PG].

The roots, however, are Edmonds’s results for b-matching polyhedra (see
since a certain (complemented) b-matching problem provides an interesting relaxation
of the ECON problem.

Let G (V, E) be a graph and r E {0, 1, 2}V. Every incidence vector of a feasible
solution F c_ E to the 2ECON problem satisfies the "star inequalities" x(5(v)) >_ rv
for all v E V. And therefore the incidence vector of the complement F :-- E\F of a
feasible solution F to the 2ECON problem satisfies

(7.1) y(5(v))

_
by IS(v)[- rv for all v e V,

0 _< ye _< 1 for all e E.

The convex hull of the integral solutions of (7.1) is the 1-capacitated b-matching
polytope of G, where b (bv),ey y. Let us set, for W C_ V, b(W) -,ew bv.
Edmonds [E] has shown that a complete linear description of the 1-capacitated b-
matching polytope of G is given by the following system

<_
y(E(H)) + y() < 2

O<_ye <_ 1

for all v V,
for all H c_ V and all T c_ 5(H) such
that b(U)+ ITI is odd,
for all e E E.

Since F 1 X’, we can derive from (7.2) that every incidence vector of a feasible
solution to the 2ECON problem satisfies

x(E(H)) + x(5(H)\T) > -,eH rv --ITI + 1

2

for all H C_ V and all T C_ 5(H) such that .eH_r. --ITI is odd. In the transformation
from (7.2) to (7.3) we have also set T := 5(H\T).

Since r {0, 1, 2}V, we call inequalities (7.3) two-cover inequalities. Note that
it follows from Edmonds’s result that the two-cover inequalities (7.3) plus the trivial
constraints 0 _< xe _< 1, for all e E, give a complete description of the two-cover
polytope, which is the convex hull of all incidence vectors of edge sets F c_ E such
that each node v V has at least r incident edges.

From the two-cover inequalities we derive a larger class of inequalities as follows.
Let G (V, E) be a graph and r {0, 1, 2}V. Let H V be a node set, called the
handle, and T c_ 5(H) an edge set. For each e E T we denote by Te the set of the
two endnodes of e. The sets T, e T, are called teeth. For simplicity we also call
the edges e T teeth in this section. If an edge e T is parallel to some edge f T,
we count T and Tf as two sets, even if Te Tf. Let H1,..., Hp, p _> 3 be a partition
of H into nonempty disjoint node sets such that

r(Hi) _> 1 for i- 1,...,p;
r(Hi) 2 if Hi is intersected by some tooth, 1,...,p;
no more than two teeth may intersect any Hi, 1,-..,p;
ITI _> 3 and odd.

We call

(7.4) x(E(H)) E x(E(Hi)) / x(5(H)) x(T) >_ p
i--1
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FG. 7.1

the lifted two-cover inequality.
In Fig. 7.1 a handle with four node sets H1,..., Ha and three teeth (drawn with

dashed lines) is depicted, inducing a lifted two-cover inequality with right-hand side 3.

For the case in which rv 2 for all v E V, Mahjoub [M] has found the same
class of inequalities (and calls them "odd wheel inequalities" using a quite different
notation).

Note that a lifted two-cover inequality coincides with a two-cover inequality (7.3),
if IHI 1 and r(H) 2 for 1,...,p. Note also that with each additional H with
IH]- 1 and r(H) 1 the right-hand side of a lifted two-cover inequality increases
by 1, whereas the right-hand side of a two-cover inequality increases only by 1/2 (on
the average). This implies that two-cover inequalities do not support 2ECON(G; r)
if H contains nodes of type 1. Nevertheless, if the right-hand side of a two-cover
inequality is increased appropriately, these inequalities define facets of 2ECON(G; r)
in many cases. This odd behavior may be explained by the fact that in an edge-
minimal solution to the two-cover problem the nodes of type 1 may lie on matching
edges, whereas in an edge-minimal solution to the 2ECON problem they are connected
by a tree (or they lie on some cycle).

Also, the class of lifted two-cover inequalities is not very useful for the 2NCON
problem, because they do not define facets in the case in which G is a complete graph
and some Hi with incident tooth contains more than one node. In 8 we will introduce
a class of inequalities for 2NCON(G; r) that contain the lifted two-cover inequalities
with IHI-- 1 as a subclass, and define facets for complete G and IHI >_ 1. But these
will be valid only for 2NCON(G; r).

As in the previous sections, we will derive validity and facet results of lifted two-
cover inequalities from validity and facet results of a special class of lifted two-cover
inequalities, namely those with Hil 1.

THEOREM 7.5. A lifted two-cover inequality (7.4) is valid for 2ECON(G; r) (and
hence for 2NCON(G; r)).

Proof. First, assume that IHil 1 and that all nodes in the handle are of type 2.
In this case, we have a two-cover inequality that is valid for the polytope of two-covers,
hence for 2ECON(G; r). It is also easy to prove validity in this case by summing up
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the inequalities:
x(5(v))>_ 2 for allveH,

-xe_>-i for alleET,
xe_> 0 for alleEb(H)\T,

dividing the result by 2 and rounding the right-hand side up.
Our next step is induction over the number of nodes of type 1 in the handle (but

still IHil 1). This can be done with the help of Lemma 4.6 by setting W := H,
( 1, and w as the new node of type 1. The result is a new valid inequality of the
form (7.4).

Finally, using Lemma 4.2, we expand the nodes in the handle successively to node
sets Hi with coefficients 0 inside Hi, to derive all inequalities of the form (7.4).

Note that when lifting a node w with incident wv T to node set W, only one
edge of [W (v}] gets coefficient 0; all others have coefficient 1 in the lifted two-
cover inequality. (If all edges in [W" (v}] had coefficient 0, the obtained inequality
would not be valid for 2ECON(G;r), but it would be valid for 2NCON(G;r); see
Theorem 8.2.)

Lifted two-cover inequalities are also valid if we allow an even number of teeth.
But they cannot define facets in this case, as can be seen easily.

The following theorem gives a necessary and sufficient condition for a special
subclass of lifted two-cover inequalities to define facets of 2ECON(G; r).

THEOREM 7.6. (a) A lifted two-cover inequality (7.4) with IHil 1 for
1,...,p, IHI ITI(- p), and IV\HI 1, defines a facet of 2ECON(G; r) if and only
if G[H] is hypomatchable (i.e., .for each node v e H there is a matching of G[H] that
is incident to all nodes in H except v).

(b) Let G[H] be a complete graph. Then any lifted two-cover inequality (7.4)
with IHil- 1 .for i-- 1,...,p, Igl >_ ITI >_ 3, and IV\HI 1, defines a facet of
2ECON(G; r).

Proof. Let F be the face induced by the lifted two-cover inequality in question.
(a) Let F be contained in a facet Fb induced by some inequality bTx

_ . We
want to prove that b is a scalar multiple of the left-hand side of the lifted two-cover
inequality.

Pick some v H. Any perfect matching M of G[H\(v}] can be enlarged to a
set C whose incidence vector is in the face F by adding some edge e 5(v)\T along
with all tooth edges. The resulting set Ct2 (e}t2T is two-edge-connected and
contains IHI- [2TJ I21 edges. By varying e E ti(v)\T, we achieve be v for
all e 5(v)\T and some constant cv. Since G[H] is connected, cv is the same for all
nodes v e H. (G[H] is connected if G[H] is hypomatchable.)

Now we prove that be 0 for e T. Let u be the node in H incident to e and
let v be some node in H adjacent to u. The incidence vector of a perfect matching of
G[H\(v}] plus edge uv plus T\(e} lies in Fb. Since adding edge e does not change the
right-hand side, we know be 0. Therefore, our lifted two-cover inequality defines a
facet.

Suppose now that E(H) is not hypomatchable. With the help of Tutte’s theorem
we will find a separation of E(H)( (5(H)\T) into edge sets El, E2,..., E8 so that

x(Ei) >_ ki is valid for 2ECON(G;r) and the sum of the ki is at least IHI- 2J.
This is done as follows: since for some node v e H the graph G[H\(v}] has no perfect
matching, by Tutte’s theorem there exists a node set S c_ H\(v} so that the number
of odd components co(G[H\(v}]- S) of G[H\(v}]- S is strictly larger than ISI. Since
H\(v} is an even node set (IHI- ITI is odd), either the number of odd components



FACETS FOR POLYHEDRA RELATED TO LOW-CONNECTED NETWORKS 497

of G[H\{v}]- S is odd and ISI is odd, or both numbers are even. In any case, we
know that Co(G[U\(v}]- S) -ISI _> 2. So Co(G[U]- (S U (v})), which is the same
as co(G[H\(v}] S), is still larger than IS t2 (v}l. For the sake of simplicity, we will
rename S :-- S t.J (v}. Let Hi be the node set of the ith (odd or even) component of
G- S. Let Ti denote the subset of teeth incident to Hi and let Ei denote the edge set
E(Hi) t2 ((Hi)\Ti). The Ti constitute a partition of T\(S), and the Ei constitute a
partition of the edge set (E(U) E(S)) (5(H)\T).

x(Ei)>ki := ,Hi,-[-]
is a valid lifted two-cover inequality (this is valid also for an even number of teeth!). If
we take the sum of these inequalities plus the nonnegativity constraints for e E(S),
we achieve x(E(g)) / x(5(H)\T) >_ k, where k is the sum of the ki. In the right-hand
side, the IHil sum up to IHI-ISI, and the [1]/2] sum up to 1/2
so the ki sum up to

+ - (co(G[H S)- ISl) >_ IHI-

Therefore, our lifted two-cover inequality can be written as the sum of at least two
other valid inequalities; hence it does not define a facet.

(b) Assume first that H contains only nodes of type 2 (with or without incident
teeth). If nodes of type 2 without incident teeth are allowed in the handle, the restric-
tion of a feasible set C whose incidence vector is in F to the edge set E(H) U 6(H)\T
is something more complicated than a matching with additional edge. It is rather a
collection of node-disjoint paths between pairs of nodes with incident teeth plus one
additional path connecting the last node with incident tooth to V\H or to some other
path. More exactly, if we set v := 2 minus the number of incident teeth for v 6 H
and z "= 0 for the node z H, then C\T meets each node v 6 V with exactly
v edges, except for one node that is met by . + 1 edges. C\T is a near-perfect
f-cover of E(H)U ((H)\T) (so to speak). To see this, add the v, divide by two,
and compare this with the right-hand side of the lifted two-cover inequality. (But not
every near-perfect f-cover of E\T plus T defines a feasible set, as there might be some
node-disjoint cycles.)

Since the structure of the feasible sets with incidence vector in F is somewhat
unwieldy, we switch to complete graphs. Let Fb be a facet containing F, induced by
some valid inequality bTx

_ . First we show be av for all e 6 5(v)\T and all
v 6 H. The connectedness of G[H] will imply that the av are the same for all v 6 V.
If v H has an incident tooth, construct node-disjoint paths in G[H] connecting pairs
of nodes with incident teeth and meeting all nodes of H except v. To this set add any
edge e 5(v)\T and T. Since we have freedom in choosing e, we can prove be
for all nodes v e H with incident teeth. If v H has no incident tooth, construct
node-disjoint paths in E(H) between pairs of nodes with incident teeth plus one path
(node-disjoint from all others) between v and the last leftover node with an incident
tooth. These paths should meet all nodes in H. Call this collection of paths C. As
before, we can add any edge of 5(v) (except the path edge C CI 5(v)), plus all teeth,
and get a set with incidence vector in Fa. This proves be a. for all e 6 5(v)\C.
But we can construct another set C’ the same way as before, only this time it uses
a different edge of 5(v). So we have be 9Iv for all e 5(v)\C and some value
Since 5(v)\T contains at least three edges, all edges in 5(v)\T have the same he-value
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% a,. Proving be 0 for the teeth e E T is easy, so we have that b is identical to
the lifted two-cover inequality; therefore it defines a facet.

If H contains nodes of type 1, we use Theorem 4.7 for induction on the number
of nodes of type 1 in H in the same way as we used Lemma 4.6 for proving validity of
the lifted two-cover inequality. [:]

Usually the feasible sets of 2ECON(G; r) whose incidence vectors satisfy the lifted
two-cover inequality with equality are not feasible for 2NCON(G; r) if V\H consists
of only one node, because this node may be an articulation node. But if V\H has
sufficiently high connectivity, (7.4) may define a facet of 2NCON(G; r).

Remark 7.7. A lifted two-cover inequality (7.4) with IHil 1 for 1,...,p,

IHI ITI(- p), defines a facet of 2NCON(G; r) if G[H] is hypomatchable, G[V\H] is
three-edge-connected, no two teeth are incident to the same node (in V\H), and no
parallel edges exist.

Proof. The proof is analogous to the proof of Theorem 7.6.
But usually, as the following remark shows, lifted two-cover inequalities do not

define facets for 2NCON(G; r) as soon as IHil > 2 for some Hi with an incident tooth.
Remark 7.8. A lifted two-cover inequality does not define a facet of 2NCON(G; r)

if there is a node set Hi and a node v V\H so that [(v}" Hi] contains a tooth and
a nontooth.

(This is the case especially if G is complete and some Hi with incident tooth
contains at least two nodes.)

Proof. It can be shown that a feasible set C c_ E with 2NCON(G; r) that sat-
isfies such a lifted two-cover inequality with equality never uses the nontooth in

[{v} Hi].
But for the 2ECON problem we can use our lifting lemmas of 4 to derive suffi-

cient conditions for a lifted two-cover inequality with general Hi to define a facet of
2ECON(G; r).

THEOREM 7.9. Given a lifted two-cover inequality (7.4), we will denote by the
graph G/H1/... /Hp.

(a) /f ([H] is hypomatchable (in the case p ITI) or complete (in the case
p > ITI), if the G[Hi] .for 1,..., p are (r(Hi) + 1)-edge-connected, and if G[V\H]
is max{2, r(Y\H) + 1}-edge-connected, a lifted two-cover inequality defines a facet of
2ECON(G; r).

(b) If the lifted two-cover inequality is facet-inducing, then ([g] and G[Hi] are

connected.for i 1,..., p, and A1 (G[Hi]) > 1 for 1,..., p. In fact, one can always
find HI,..., Hp with A(G[Hi]) > 2 for i 1,...,p that induce the lifted two-cover
inequality in question.

Proof. (a) Theorem 7.6 proves the lifted two-cover inequality to be facet-defining
for 2ECON(G; r). With Lemma 4.4 we can lift this result to 2ECON(G; r).

(b)^It is easy to see that the G[Hi] must be connected for all i 1,..., p.
If G[H] is not connected, we can split the handle H into two handles H’ and H"

to derive two lifted two-cover inequalities whose sum gives the old one. So the old one
cannot define a facet.

It remains to show that we can find H,..., Hp with A (G[Hi]) _> 2 for i 1,..., p
that induce our lifted two-cover inequality.

If Hi has no incident tooth and A1 (G[H]) 1, then our lifted two-cover inequality
can be written as the sum of another lifted two-cover inequality where Hi is split into
at least two other sets plus one constraint xe _< 1. The same argument is possible if
Hi has an incident tooth and A2(G[Hi]) 1. So in these cases our lifted two-cover
inequality cannot define a facet.
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It remains to check the case in which Hi has an incident tooth e and 1 (G[Hi])
1. In this case G[Hi] has a bridge f so that G[Hi]- f decomposes into two components
U and W with r(U) 1 and r(W) >_ 1. The interesting case is the one where the
tooth e is incident to U, because there we cannot simply split Hi into U and W
to derive a stronger lifted two-cover inequality. But we can replace Hi by Hi\U,
H by H\U, and the tooth e by the bridge f to derive another lifted two-cover inequality
of the same form as the old one. By repeating this procedure of reducing Hi, we can
assume that 1(G[Hi]) _> 2 for all i-- 1,...,p.

8. Comb inequalities. The following constraints were motivated, on the one
hand, by the comb inequalities for the traveling salesman problem (see [GP]), and on
the other hand, they were motivated by the fact that the lifted two-cover inequalities
do not generally define facets for the 2NCON problem (see Remark 7.8). We wanted
to find a facet containing the face induced by a lited two-cover inequality in the case
in which G is a complete graph and the Hi contain more than one node.

The class of inequalities we came up with in this case are valid for 2NCON(G; r),
but not generally for 2ECON(G;r). We will call this class comb inequalities for
2NCON(G; r). These inequalities allow a further generalization using the concept
of clique trees. But we will not discuss this here.

Let H, T,. , T be subsets of V and let zi Ti\H, 1,..., t, be not necessarily
distinct nodes (H is called the handle, the sets T,..., Tt are the teeth, and the
z,..., zt the special nodes) that satisfy the following conditions:

t >_ 3 and odd;
two teeth have at most one node in common;
if Ti CTj , then T T {zi}-- {z};

--each tooth Ti intersects the handle H in exactly one node; we denote this node
by ti for i- 1,...,t;

rt 2 for i 1,..., t;
r >_ 1 for all v

We denote by V2 the set of nodes of type 2 in G. The special comb inequality is
given by

(8.1)
x(E(H)) + x(6(H)) + i= x(E(Ti))
+i: x([Ti\(g U {zi}) V\Ti]) ([{ti}-i= x

-i= x([(zi} Ti Y2]) >_ IHI + -i= (ITil- 2)

The (general) comb inequality is derived from the special comb inequality (8.1) by
expanding all nodes w H that are not in (z,..., zt } to node sets W (see Lemma 4.2).
Figure 8.1 gives an illustration of a comb inequality with a handle H consisting of four
node sets and three teeth Ti, 1,..., 3, which has right-hand side 6. Edges with
coefficient 0 are drawn with dashed lines, edges with coefficient 1 with solid lines, and
edges with coefficient 2 with bold lines.

We note that the comb inequality becomes a lifted two-cover inequality with sets
Hi :-- (ti} if ITil- 2 and IE(Ti)I- 1.

We will prove validity and facet results only for special comb inequalities. With
the help of Lemmas 4.2-4.5 one can easily derive validity and facet results for general
comb inequalities.

THEOREM 8.2. A comb inequality (8.1) is valid for 2CON(G;Z;r) with Z
(z, z2,...,z}, and hence it is valid for 2NCON(G; r).
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FIG. 8.1

Proof. Assume that all nodes in (H U (Ui=lTi))\{Zl,... ,Zt} are nodes of type 2.
Then the left-hand side of the comb inequality (8.1) can be written as 1/2 times the
sum of the following inequalities with subsequent rounding:

(1) for all v e H\(U=ITi)" the cut inequality x((v)) >_ 2;
(2) for all teeth Ti: the node-partition inequality (6.1) induced by z and the

partition {V\T, {v} for all v e T\{z}}; the right-hand side is ITil- 1;
(3) for all teeth T with r(T\{t,z}) 2: the node-partition inequality (6.1)

induced by zi and the partition {Y\(T{\{t}), {v} for all v e T\{z,ti}}; the right-
hand side is ITI- 2;

(4) for all teeth T with r(T\{t,zi}) 1" the partition inequality (5.2) induced
by the partition {(V\T{)U {t{,z}, {v} for v e T\{ti, z{}}; its right-hand side is

ITl- 2;
(5) some nonnegativity constraints.
The sum of () times the right-hand sides of these inequalities is"

IH\ (U= T)I + E= (IT, I-
-IHI- t + 3= ITI s

2

IHI + 3=1(ITI- 2)- .
Rounding this up gives the right-hand side of (8.1) exactly.

If the handle contains nodes of type 1, we apply Lemma 4.6 inductively with
W H and :- 1. If a tooth T contains nodes of type 1, we apply Lemma 4.6
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with W :-- Ti and ( :- 1; this is done in the same way as in the validity proof for
node-partition inequalities. [:]

Note that the comb inequality (8.1) is also valid if the number of teeth t is even.
But in this case it does not define a facet, as it can be written as the sum of a comb
inequality and node-partition inequality (or a nonnegativity constraint).

Note also that if U U (U=ITi) V and zl z2 zt and ITI 2 for
all i, the special comb inequality with right-hand side IHI- [-] may degenerate into
a node-partition inequality with higher right-hand side, namely, IHI- 1. In this case
the special comb inequality cannot define a facet.

THEOREM 8.3. The special comb inequality (8.1) defines a facet of 2NCON(G;r)
if rv 2 .for all nodes v E V, if the zi are all distinct, and if G is the complete graph
minus all edges with coefficient 2 in (8.1).

Proof. The restriction to nodes of type 2 has only technical reasons, mainly be-
cause of Lemma 6.4. The restriction to edges with coefficients 0 and 1 is also introduced
only for technical reasons. Once we have proved an inequality to define a facet only
on a subset of edges of the complete graph, it is easy to prove it to be facet-defining
on the complete graph.

Let F be the face induced by the comb inequality in question, and let F be
contained in the face Fb induced by some valid inequality bTx

_ . First we prove
be ci for all edges in E(Ti)t2 [(ti} HI with coefficient 1 and some (i. We do
this (without loss of generality) for tooth T1. Suppose that ITll _> 3. (For "small"
teeth that consist of only one edge, the following proof has to be modified somewhat.)
Construct a collection P of node-disjoint paths in G[H] between pairs of nodes
say, between t2 and t3, t4 and tb, etc. Those paths should meet every node in H
except t. To this collection of paths P, we may add certain trees in the teeth Ti that
are constructed as follows:

(1) For T1 we take any feasible edge set whose incidence vector lies in the face of
2NCON(G/(V\T); r) induced by a certain node-partition inequality on T, namely,
the one with node z z and node sets (v} for all nodes v in T and (w} for the
shrunk node standing for V\T (cf. (2) used in the validity proof in Theorem 8.2).
These sets are trees on T\(z} plus certain edges of ti(zl) plus some edge leading
from T to V\TI. Note also that the face of 2NCON(G/(V\T);r) induced by the
node-partition inequality is a facet by Lemma 6.4.

(2) For Ti with 1, we take any feasible edge set whose incidence vector lies in
the face of 2NCON(G/((V\Ti) (ti}); r) induced by (3) or (4) of the validity proof
in Theorem 8.2. These objects are mainly trees on Ti\(zi, ti} plus certain edges in

[(z} Ti]. If ITil-- 2, we just take the edge of tooth Ti.
Finally, we add all edges zizj to this construction.
We claim that this combination of paths in G[H] and trees of Ti is feasible.

This can be easily checked. Secondly, we claim that its incidence vector lies in the
face induced by the comb inequality; this is true because all inequalities used in the
validity proof of the comb inequality are satisfied with equality except one.

Since we have some freedom in the choice of the "tree" in T, and we know that
the node-partition inequality used for the construction of these "trees" defines a facet
of 2NCON(G/(V\Ti);r), we know that be c for all nonzero edges in this node-
partition inequality, and be 0 for all zero edges e. This can be done for all teeth Ti
in the same way as shown for tooth T.

Now we prove that all edges inside the handle have the same be-value. This value
must be the same as , 2, etc. Thus, we know that all edges with coefficient 1 in
the comb inequality have the same be-value and all edges e with coefficient 0 in the
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comb inequality have be --0.
To prove be (v for all e E (G[H](V) and v E H, we just vary our construction

of paths in the beginning. This is done in exactly the same way as in the proof of
Theorem 7.6(b). To give an example: If v H\T, then we construct paths between
tl and v, t2 and t3, etc. that are all node-disjoint. These paths should meet all nodes
in G[H]. In addition to this collection P of paths we construct trees in Ti according to
point (2) above. Now we can add any edge e e i(v)N E(H) not already in some path
to achieve a feasible solution whose incidence vector lies in the face Fa. So be bf
for all e, f e ((v)\P) E(H). To prove be bf for all e, f e (v) E(H), we just
choose a collection of paths using another edge of 5(v).

It is easy to prove that the be-value for the e of zero coefficient in the comb
inequality is also 0.

So inequality bTx

_
/ is identical to the comb inequality (8.1) except for scalar

multiplication. Therefore, it defines a facet of 2NCON(G; r). D
The question naturally arises whether there are also "comb" inequalities valid for

2ECON(G; r). We know of such a class, but the validity proof is somewhat ugly. In
such a "comb" inequality we have two types of teeth: "simple" teeth consisting of only
one edge with coefficient 0, and "large" teeth T with coefficients 0 on edges in T\H,
and coefficients 1 on the edges leading from T\H to T H and to the "outside."
The edges in the handle have coefficients 2. This seems to be more symmetric, and
therefore, in a way, nicer than the comb inequalities (8.1).

Also, some other odds and ends of inequalities that do not fit into any of the pre-
sented classes are known to us. Some of these are published in Stoer’s dis-
sertation IS].

9. Computational results. The theory presented here for the 2ECON and
2NCON polytopes was developed in order to solve problems of the type and size that
arise in the design of survivable telephone networks in fiber optic technology. The
idea was to design and implement a cutting plane algorithm that uses the inequalities
introduced above.

As mentioned before, it unfortunately turned out that--except for the cut and
node-cut inequalities--the separation problem for all other classes of inequalities pre-
sented here is NP-hard. This means that we can use these classes of inequalities only
heuristically. We had to make an experimental investigation of the relative benefit of
running various heuristics that determine, for a given point y, an inequality of some
class of valid inequalities that is violated by y.

The final outcome of our computational study was a cutting plane code that uses
exact separation routines for cut and node-cut inequalities and separation heuristics
for partition, node-partition, and lifted two-cover inequalities. For the type and size
of practical problems used as our test cases, the other classes of inequalities were of
no significant help. We expect, however, that for larger problem sizes and graphs
of higher density further inequalities will be needed to achieve satisfactory computa-
tional performance. But that will make a more thorough design and investigation of
separation heuristics for the other classes of inequalities necessary.

The design and implementation of a practically efficient cutting plane algorithm
is a rather tricky and time-consuming task. Its success is based on the proper combi-
nation of many details. Some of these are described in [GMS] and IS]. We are unable to
outline these here. Our final code showed the following computational characteristics
on our test problems.
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We obtained the data of seven real networks (nodes, possible direct links, costs
of establishing links) from network designers at Bell Communications Research. The
sizes ranged from 36 nodes and 65 edges to 116 nodes and 173 edges. For all networks,
2NCON and 2ECON solutions had to be found, but in only one case did these solutions
differ. So we had eight test problems available. According to the network designers,
these data represent the range of typical practical applications in this area.

We ran our cutting plane algorithm (using a research version of Bixby’s LP-
code (see [eix]) and Jiinger’s Branch and Cut framework (unpublished)) on a SUN
3/60, a 3 MIPS machine. Five of the eight problems were solved to optimality in
the cutting plane phase in less than 10 seconds. In the remaining three cases the
cutting plane phase finished after at most 31 seconds with an integrality gap of less
than 1 percent. In the subsequent branch and cut phases no more than 20 nodes were
generated in the branching tree and at most an additional 11/2 minutes were needed
to find an optimal solution and prove optimality. Further cases, run subsequently,
showed similar computational performance. (See [GMS] for more details.)

Considering these computational results, we feel confident in saying that all sur-
vivable network design problems of the type and size arising at Bellcore can be solved
to optimality with our code in at most a few minutes on a 3 MIPS machine. Thus the
theoretical investigation presented here has helped (and helps further) to solve typical
instances of a combinatorial optimization problem of significant practical importance.
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